Project File Details

Download the complete Electrical Engineering project topic and material (chapter 1-5) titled A SEMINAR REPORT ON CIRCUIT BREAKERS here on See below for the abstract, table of contents, list of figures, list of tables, list of appendices, list of abbreviations and chapter one. Click the DOWNLOAD NOW button to get the complete project work instantly.


Download the complete Electrical Engineering project topic and material (chapter 1-5) titled A SEMINAR REPORT ON CIRCUIT BREAKERS here on See below for the abstract, table of contents, list of figures, list of tables, list of appendices, list of abbreviations and chapter one. Click the DOWNLOAD NOW button to get the complete project work instantly.



The Project File Details

  • Type: PDF and MS Word (DOC)
  • Size: [197KB]
  • Length: [37] Pages



This contribution provides an overview on the common on-site test methods to ensure the safe and reliable operation of circuit breakers used in high and medium-voltage power systems. Failures on circuit breakers can generally be ascribed to defects in one or more of the three main components: The operating mechanism incl. mechanical linkage, the electrical control circuits and the components at system voltage. Therefore, detecting wear and tear processes in these components of the circuit breaker during scheduled maintenance procedures reduces the risk of failures during operation. The standard on-site testing practices include timing, travel and coil current signature measurements to assess the integrity of the kinematic chain and control circuits. In addition, micro-ohm measurements are performed on the breaker’s main contacts. This paper discusses the advantages and disadvantages of these standard practices and how to interpret measurement results. Furthermore advanced testing methods are introduced that can easily be applied using the latest testing technology.



1.1 Introduction to Circuit Breakers

A circuit breaker is an automatically operated electricalswitch designed to protect an electrical circuit from damage caused by overcurrent or overload or short circuit. Its basic function is to interrupt current flow after protective relays detect a fault. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset (either manually or automatically) to resume normal operation. Circuit breakers are made in varying sizes, from small devices that protect an individual household appliance up to large switchgear designed to protect high voltage circuits feeding an entire city. The generic function of a circuit breaker, RCD or a fuse, as an automatic means of removing power from a faulty system is often abbreviated to ADS (Automatic Disconnection of Supply).

A power circuit breaker is equipment intended to switch on and off electric currents on power transmission and distribution networks for routine operations and protection of other equipment.

Electric transmission system breakups and equipment destruction can occur if a circuit breaker fails to operate because of a lack of preventive maintenance.

1.2 Origins of Circuit Breakers

An early form of circuit breaker was described by Thomas Edison in an 1879 patent application, although his commercial power distribution system used fuses. Its purpose was to protect lighting circuit wiring from accidental short circuits and overloads. A modern miniature circuit breaker similar to the ones now in use was patented by Brown, Boveri & Cie in 1924. Hugo Stotz, an engineer who had sold his company to BBC, was credited as the inventor on DRP (Deutsches Reichspatent). Stotz’s invention was the forerunner of the modern thermal-magnetic breaker commonly used in household load centers to this day. Interconnection of multiple generator sources into an electrical grid required development of circuit breakers with increasing voltage ratings and increased ability to safely interrupt the increasing short circuit currents produced by networks. Simple air-break manual switches produced hazardous arcs when interrupting high voltages; these gave way to oil-enclosed contacts, and various forms using directed flow of pressurized air, or of pressurized oil, to cool and interrupt the arc. By 1935, the specially constructed circuit breakers used at the Boulder Dam project use eight series breaks and pressurized oil flow to interrupt faults of up to 2,500 MVA, in three cycles of the AC power frequency.[3]


1.3 Operation of a Circuit Breaker

All circuit breaker systems have common features in their operation, but details vary substantially depending on the voltage class, current rating and type of the circuit breaker.

The circuit breaker must detect a fault condition; in common mains and low voltage circuit breakers, this is usually done within the breaker itself. Circuit breakers for large currents or high voltages are usually arranged with a protective relay pilot devices to sense a fault condition and to operate the trip opening mechanism. The trip solenoid that releases the latch is usually energized by a separate power source, such as a battery, although some high-voltage circuit breakers are self-contained with current transformers, protective relays, and an internal control power source.

Once a fault is detected, the circuit breaker contacts must open to interrupt the circuit; this is commonly done using mechanically stored energy contained within the breaker, such as a spring or compressed air to separate the contacts. Circuit breakers may also use the higher current caused by the fault to separate the contacts, such as thermal expansion or a magnetic field. Small circuit breakers typically have a manual control lever to switch off the load or reset a tripped breaker, while larger units use solenoids to trip the mechanism, and electric motors to restore energy to the springs.

The circuit breaker contacts must carry the load current without excessive heating, and must also withstand the heat of the arc produced when interrupting (opening) the circuit. Contacts are made of copper or copper alloys, silver alloys and other highly conductive materials. Service life of the contacts is limited by the erosion of contact material due to arcing while interrupting the current. Miniature and molded-case circuit breakers are usually discarded when the contacts have worn, but power circuit breakers and high-voltage circuit breakers have replaceable contacts.

When a high current or voltage is interrupted, an arc is generated. The length of the arc is generally proportional to the voltage while the intensity (or heat) is proportional to the current. This arc must be contained, cooled and extinguished in a controlled way, so that the gap between the contacts can again withstand the voltage in the circuit. Different circuit breakers use vacuum, air, insulating gas, or oil as the medium the arc forms in. Different techniques are used to extinguish the arc including:

  • Lengthening or deflecting the arc
  • Intensive cooling (in jet chambers)
  • Division into partial arcs
  • Zero point quenching (contacts open at the zero current time crossing of the AC waveform, effectively breaking no load current at the time of opening. The zero crossing occurs at twice the line frequency; i.e., 100 times per second for 50 Hz and 120 times per second for 60 Hz AC.)
  • Connecting capacitors in parallel with contacts in DC circuits.

Finally, once the fault condition has been cleared, the contacts must again be closed to restore power to the interrupted circuit.

1.4 Arc interruption

Low-voltage miniature circuit breaker (MCB) uses air alone to extinguish the arc. These circuit breakers contain so-called arc chutes, a stack of mutually insulated parallel metal plates which divide and cool the arc. By splitting the arc into smaller arcs the arc is cooled down while the arc voltage is increased and serves as an additional impedance which limits the current through the circuit breaker. The current-carrying parts near the contacts provide easy deflection of the arc into the arc chutes by a magnetic force of a current path, although magnetic blowout coils or permanent magnets could also deflect the arc into the arc chute (used on circuit breakers for higher ratings). The number of plates in the arc chute is dependent on the short-circuit rating and nominal voltage of the circuit breaker.

In larger ratings, oil circuit breakers rely upon vaporization of some of the oil to blast a jet of oil through the arc.

Gas (usually sulfur hexafluoride) circuit breakers sometimes stretch the arc using a magnetic field, and then rely upon the dielectric strength of the sulfur hexafluoride (SF6) to quench the stretched arc.

Vacuum circuit breakers have minimal arcing (as there is nothing to ionize other than the contact material), so the arc quenches when it is stretched a very small amount (less than 2–3 mm (0.079–0.118 in)). Vacuum circuit breakers are frequently used in modern medium-voltage switch gear to 38,000 volts.

Air circuit breakers may use compressed air to blow out the arc, or alternatively, the contacts are rapidly swung into a small sealed chamber, the escaping of the displaced air thus blowing out the arc.

Fig 1.4: an air circuit breaker for low-voltage (less than 1,000 volt) power distribution switchgear

Circuit breakers are usually able to terminate all current very quickly: typically the arc is extinguished between 30 ms and 150 ms after the mechanism has been tripped, depending upon age and construction of the device. The maximum current value and let-through energy determine the quality of the circuit breakers.

1.5 Short-circuit

Circuit breakers are rated both by the normal current that they are expected to carry, and the maximum short-circuit current that they can safely interrupt. This latter figure is the ampere interrupting capacity (AIC) of the breaker.

Under short-circuit conditions; the calculated maximum prospective short circuit current may be many times the normal, rated current of the circuit. When electrical contacts open to interrupt a large current, there is a tendency for an arc to form between the opened contacts, which would allow the current to continue. This condition can create conductive ionized gases and molten or vaporized metal, which can cause further continuation of the arc, or creation of additional short circuits, potentially resulting in the explosion of the circuit breaker and the equipment that it is installed in. Therefore, circuit breakers must incorporate various features to divide and extinguish the arc.

The maximum short-circuit current that a breaker can interrupt is determined by testing. Application of a breaker in a circuit with a prospective short-circuit current higher than the breaker’s interrupting capacity rating may result in failure of the breaker to safely interrupt a fault. In a worst-case scenario the breaker may successfully interrupt the fault, only to explode when reset.

Typical domestic panel circuit breakers are rated to interrupt 10 kA (10000 A) short-circuit current.

Miniature circuit breakers used to protect control circuits or small appliances may not have sufficient interrupting capacity to use at a panel board; these circuit breakers are called “supplemental circuit protectors” to distinguish them from distribution-type circuit breakers.

Standard current ratings

Fig. 1.5:Time till trip versus current as multiple of nominal current

Circuit breakers are manufactured in standard sizes, using a system of preferred numbers to cover a range of ratings. Miniature circuit breakers have a fixed trip setting; changing the operating current value requires changing the whole circuit breaker. Larger circuit breakers can have adjustable trip settings, allowing standardized elements to be applied but with a setting intended to improve protection. For example, a circuit breaker with a 400 ampere “frame size” might have its over current detection set to operate at only 300 amperes, to protect a feeder cable.

International Standards, IEC 60898-1 and European Standard EN 60898-1, define the rated currentIn of a circuit breaker for low voltage distribution applications as the maximum current that the breaker is designed to carry continuously (at an ambient air temperature of 30 °C). The commonly available preferred values for the rated current are 6 A, 10 A, 13 A, 16 A, 20 A, 25 A, 32 A, 40 A, 50 A, 63 A, 80 A, 100 A, and 125 A (similar to the R10 Reynard series, but using 6, 13, and 32 instead of 6.3, 12.5, and 31.5 – it includes the 13 A current limit of British BS 1363 sockets). The circuit breaker is labeled with the rated current in amperes, but excluding the unit symbol, A. Instead, the ampere figure is preceded by a letter, B, C, or D, which indicates the instantaneous tripping current — that is, the minimum value of current that causes the circuit breaker to trip without intentional time delay (i.e., in less than 100 ms), expressed in terms of In:

TypeInstantaneous tripping current
BAbove 3 In
CAbove 5 In up to and including 10 In
DAbove 10 In up to and including 20 In
KAbove 8 In up to and including 12 In

For the protection of loads that cause frequent short duration (approximately 400 ms to 2 s) current peaks in normal operation.

ZAbove 2 In up to and including 3 In for periods in the order of tens of seconds.

For the protection of loads such as semiconductor devices or measuring circuits using current transformers.

Circuit breakers are also rated by the maximum fault current that they can interrupt; this allows use of more economical devices on systems unlikely to develop the high short-circuit current found on, for example, a large commercial building distribution system.

In the United States, Underwriters Laboratories (UL) certifies equipment ratings, called Series Ratings (or “integrated equipment ratings”) for circuit breaker equipment used for buildings. Power circuit breakers and medium- and high-voltage circuit breakers used for industrial or electric power systems are designed and tested to ANSI or IEEE standards in the C37 series.



All project works, files and documents posted on this website, are the property/copyright of their respective owners. They are for research reference/guidance purposes only and the works are crowd-sourced. Please don’t submit someone’s work as your own to avoid plagiarism and its consequences. Use it as a guidance purpose only and not copy the work word for word (verbatim). is a repository of research works just like,,,, coursehero and many other platforms where users upload works. The paid subscription on is a means by which the website is maintained to support Open Education. If you see your work posted here, and you want it to be removed/credited, please call us on +2348159154070 or send us a mail together with the web address link to the work, to [email protected] We will reply to and honor every request. Please notice it may take up to 24 - 48 hours to process your request.