Original Author (Copyright Owner):



Download the complete Computer science topic and material (chapter 1-5) titled DESIGN OF AUTOMATED REMOTE POWER MANAGEMENT SYSTEM (ARPMS) here on PROJECTS.ng. See below for the abstract, table of contents, list of figures, list of tables, list of appendices, list of abbreviations and chapter one. Click the DOWNLOAD NOW button to get the complete project work instantly.



The Project File Details

  • Type: PDF and MS Word (DOC)
  • Size: [3429KB]
  • Length: [131] Pages



The magnitude of operational losses in the supply of electricity in Nigeria has been growing   significantly. Issues of theft and illegal connection pose major challenges in the energy distribution. This has greatly worsened the current electricity supply in the country; hence, the need for the design of a robust system for identifying or detecting illegal electricity consumption.

In this study, an Automated Remote Power Management System (ARPMS) was developed for detection of meter bypassing, tampering and illegal load shedding. ARPMS consisted of embedded microcontroller, Current and Voltage Sensors (CVS), and Global System for Mobile Communication (GSM) module for effective detection of meter tempering. The microcontroller was embedded with microprograms for task regulation and control functions. The CVSs were used to monitor and report deviations from the normal signals. The GSM module was used for remote communication and control. The microcontroller was programmed using embedded C. A user-study experiment, which involved fifty (50) purposively selected electrical engineers, was carried out to evaluate the proposed system. The engineers subjected the system to different scenarios of bypass. A structured questionnaire guide was used to capture responses from the engineers. Descriptive analysis was conducted on the performance data of the ARPMS from the engineers.

The result showed that ARPMS had 100% efficiency, 96% acceptance and a remote communication index of 0.99. This showed that ARPMS had high capability for detecting meter tempering. The result also showed that the real time ARPMS was able to evaluate the amount of consumed energy by a building through remote monitoring and control of domestic energy meter, and gave the information about the meter reading to the utility company through Short Message Services (SMS). ARPMS provided regular status of the meter on a predefined interval, and displayed user’s account update in real time. This system also detected electricity power bypass by consumers. The ARPMS controlled technology demonstrated the capability of providing a better mechanism for collecting power consumption bills in advance.

In conclusion, an efficient ARPMS for preventing power theft has been developed. It also used GSM based technology to perform billing related processes at all times. The system is therefore recommended for electricity Distribution Companies (DISCOs) for efficient management of energy consumption and prepaid billing.

Keywords:      Automated Remote, Monitoring, Microcontroller, GSM Communication, Embedded C

Word Count: 376



Content                                                                                                                       Page

Cover Page

Title Page                                                                                                                    i

Certification                                                                                                                ii

Dedication                                                                                                                  iii

Acknowledgements                                                                                                    iv

Abstract                                                                                                                      v

Table of Contents                                                                                                       vi

List of Tables                                                                                                              xi

List of Figures                                                                                                             xiii


1.1       Background to the Study                                                                               1

1.1.1    Motivation                                                                                                      4

1.1.2    Summary of Motivation                                                                                  5

1.1.3    Measure and Methods of Stealing Electricity                                                            6

1.1.4    Factors that Influence Illegal Consumers                                                       10

1.2       Statement of the Problem                                                                               10

1.3       Objective of the Study                                                                                   11

1.4       Significance of the Study                                                                               11

Content                                                                                                                       Page

1.5       Scope of the Study                                                                                         11

1.6       Organization of the Study                                                                              12


2.1       Conceptual Review                                                                                         14

2.1.1    Automatic Meter Reading (AMR) Electricity                                                17

2.1.2    Smart Meter                                                                                                    17

2.1.3    Global System for Mobile Communication (GSM)                                        17

2.1.4    Pulse Detection and Electric metering system                                                17

2.1.5    Power Utility Control Central –Recharging Process                                      18

2.1.6    Design of energy meter using SIM                                                                 19 Fixed charge collector – Hand-Reset Type                                                     19 Fixed charge collector – Time Switch Type                                                    19 Flat rate tariff meter                                                                                        19 Two-part tariff – Fixed Rate Type                                                                  20 Two-part tariff – Variable Rate Type                                                              20 Double tariff, Current Change-Over Type                                                     20 Double tariff, time Change-Over Type                                                           20

2.1.7    Payment Solutions: Coins, Token, Pin, Barcode, Memory Card

and Smart Card                                                                                               21

Content                                                                                                                       Page Coins                                                                                                               21 Token or pin                                                                                                    21 Memory cards                                                                                                 21 Barcodes                                                                                                         22 Smart cards                                                                                                     22 Mobile Phone                                                                                                  22

2.2       Theoretical Framework                                                                                   31

2.3      Empirical Review                                                                                             33

2.3.1    Design of Energy Meter Using a Smart Card                                                 34

2.3.2    Design and Development of Automatic Meter Reading (AMR) System      34

2.3.3    Wireless Electrical Meter Reading Based on ZIGBEE Technology              35

2.3.4    Automatic Meter Reading System using GPRS Technology                         35

2.3.5    ZIGBEE based meter to measure the electricity consumption                       35

2.3.6    Automatic Meter Reading using Wireless Network                                       35

2.3.7    Impact of Smart Metering on Energy Efficiency                                           36

2.3.8    The Path of the Smart Grid on Rising Cost of Energy Consumption            36

2.3.9    Automation of Residential Electricity Meter Reading                                   36

2.3.10  Prepaid Electricity Meter System based on RFID                                         36

2.3.11  Prepaid Energy Meter Based on AVR microcontroller                                  37

Content                                                                                                                       Page

2.3.12  Development of a Vigilant Energy Meter                                                      37

2.3.13  Wireless Electric Meter Reading                                                                    37

2.3.14  Automated wireless meter reading system for monitoring power theft

andcontrolling power Consumption                                                               38

2.3.15  Electrical Power Theft Detection and Wireless Meter Reading                     38

2.3.16  Wireless Power Theft Detection                                                                     38

2.3.17  The cImpact of the Pre-Paid Meter onRevenue Generation in Nigeria          38


3.1       Research Design                                                                                             40

3.2       Block diagram                                                                                                 42

3.2.1    Microcontroller unit                                                                                        43

3.2.2    Relay unit                                                                                                        43

3.2.3    GSM modem                                                                                                  43

3.2.4    Liquid crystal display                                                                                                 44

3.3       Design of the power supply unit                                                                     44

3.3.1    Circuit explanations                                                                                        44

3.4       Design of a voltage sensing device that automatically adjusts

the power factor of the electricity supply through its calibration                   47


3.5       Design of a current sensing device to measure the accurate

consumed by theload                                                                                      47


Content                                                                                                                       Page

3.6       Programming of PIC18F252 microcontroller that will measure

current, voltage, and calculate the power from the load                                47

3.7       Programming of the recharge                                                                          50

3.8       Prepaid meter reading and reconciliation between energy service

provided and communication company                                                          51

3.9       Display unit                                                                                                     52

3.10     Interfacing circuit for liquid crystal display (LCD)                                        53

3.11     Interfacing SIM 300 with PIC18F252 96                                                      55

3.12     SMS controller unit                                                                                         55

3.13     Algorithm for energy metering system at consumer’s end                             56

3.13.1  Algorithm used for the implementation of the intelligent

prepaid energy meter                                                                                      57

3.13.2  Explanation of code                                                                                        58

3.14     Design of the relay                                                                                          61

3.14.1 Program explanation of code                                                                           63

3.15     Over current detector                                                                                      63

3.16     Design flowchart                                                                                            65

3.17     By-pass detection unit                                                                                    66

3.17.1  Explanation of the code                                                                                  67


Content                                                                                                                       Page



4.1       Simulation of LCD with the Microcontroller Unit (MCU)                            69

4.2       Power Calculation                                                                                           69

4.2.1    Explanation of the Code for Power Evaluation                                             73

4.3       Calculation and result                                                                                     73

4.4       System simulation                                                                                           81

4.5       Block Testing                                                                                                  83

4.5.1    Power supply                                                                                                  83

4.5.2    Voltage sensing circuit                                                                                    83

4.5.3    Relay (Latch for load)                                                                                    83

4.5.4    Testing of max 232 driver                                                                               86

4.5.5    Interfacing the GSM with PIC18F252                                                           86

4.6       System Testing                                                                                                86

4.7       Result of SMS sent                                                                                         88

4.8       System Evaluation                                                                                          88


Content                                                                                                                       Page



5.1       Summary                                                                                                         90

5.1.1    Summary of Work                                                                                          91

5.2       Conclusion                                                                                                      91

5.3       Recommendations                                                                                          92

5.4       Contribution to Knowledge                                                                            92

5.5       Suggestions for Further Studies                                                                     94

References                                                                                                                  95

Appendix I: Major legal references                                                                            99

Appendix II: Program code for prepaid Energy meter                                               101









Table                                                                                                                           Page

4.1       Test result of energy measurement by the intelligent prepaid Energy

meter where p=60W                                                                                       73

4.2       Test result of energy measurement by the intelligent prepaid Energy

meter. P= 120W                                                                                              75

4.3       Test result of energy measurement by the intelligent prepaid energy

meter. p = 1+80W                                                                                           77

4.4       Test result of Energy measurement by the intelligent prepaid energy

meter. P=240W                                                                                               79

5.1       Summary of Contribution                                                                               93













Figure                                                                                                                          Page

1.1       Statistical graph of analyzing electricity theft                                                5

1.2       Tapping electricity directly from a distribution feeder-bypassing the

Meter                                                                                                               7

1.3       Technique used by illegal consumers to regulate the supply

voltage and manipulate the energy meter reading                                          8

2.1       Payment by coins                                                                                            23

2.2       Payment by Token or PIN                                                                              24

2.3       Payment by memory cards                                                                              25

2.4       Payment by Barcodes                                                                                     26

2.5       Payment by smart cards                                                                                  27

2.6       Payment by mobile phones                                                                             28

2.7       Flowchart for prepaid electricity                                                                    29

2.8       Vending process                                                                                             30

3.1       Block diagram of the prepaid energy meter                                                   42

3.2       Connection diagram of power supply                                                             46

3.3       Programmable Chip Pinout                                                                             49

3.4       Connection diagram of LCD with microcontroller                                        54

3.5       Connection diagram of Relay driver                                                              62

3.6       Development flowchart of the intelligent energy meter                                 65

Figure                                                                                                                          Page

4.1       Simulation of LCD with the MCU                                                                 71

4.2       Energy consumption for test 1                                                                        74

4.3       Energy consumption for test 2                                                                        76

4.4       Energy consumption for test 3                                                                        78

4.5       Energy consumption for test 4                                                                        80

4.6       Sample Test for system simulation                                                                 82

4.7       Sample Test for power supply circuit                                                             84

4.8       Sample Test for voltage sensing circuit                                                          85

4.9       Sample Test for GSM interfacing to PICI8F252 through MAX 232                        87

4.10     Complete intelligent Energy meter circuit                                                      89






1.1 Background to the Study

Electricity is very crucial to the socio-economic and technological development of every country. One of the indices used to measure the development of an economy is uninterrupted power supply. It is widely accepted that there is a strong correlation between the availability of electricity and socio-economic development. The supply of electricity in Nigeria incurs substantial capital. The enormity of these costs is growing astronomically across the globe. To decipher the unlawful users of electricity in a bid to enhance the economy of utility company, efficiency and protection of the grid, a novel procedure for scrutinizing electricity usage patterns of customers and recognizing illegal consumers is proposed and implemented. Nigeria electric power network operator, electricity Distribution Companies of Nigeria (DISCOs) has for a long period of time been combating the problem of revenue collation. This is majorly attributed to the fact that electricity bills are sent to consumers after consumption. Consumers are usually unwilling to pay electricity bills as a result of epileptic nature of the electricity supplied which is not usually mirrored in the bills which are basically estimates of power usage and not usually commensurate to the true amount of electricity consumed by the respective consumer.

The low reliability of electric power supply has little bearing on the network operator because whether power is provided or not, in the post-paid method, the monthly electricity bills are still sent to consumers. Hence, the user bears the cost of generating power for their personal usage as well as that of the electricity that was never provided by DISCOs. Due to the enormity of the debt accrued by customers, the network operator initiated a cash collection policy named Revenue Cycle Management (RCM) which involves collecting monies owed through private establishments. This failed to give the anticipated results; hence DISCOs came up with the digital pre-paid meter in 2006 whose operation is somewhat synonymous with the loading of an airtime voucher in the Global System for Mobile communication (GSM) handset. If power is available and the pre-paid meter is loaded with units, the loaded unit diminishes only when the load is connected and stops when power is interrupted. In the last decade, smart cards evolved from basic memory cards to complex systems on chips with a processing power that can be expanded. This became an avenue for the invention of many applications used in the world today. The smart card, an intelligent token, is a credit card sized plastic card embedded within an integrated circuit chip. A smart card usually consists of a Read Only Memory (ROM) or flash memory, Electrical Erasable Programmable Read Only Memory (EEPROM) and a Central Processing Unit (CPU). The smart card operating system controls access to data on the card. The card operating system does not only make the smart card secure for access control, but also has the capability to store a private key for a public key infrastructure system.

Recently, the industry has come up with 32-bit smart card processors having more than 400Kbytes of EEPROM, and a memory management and protection unit serving as a firewall for the hardware. This hardware firewall enables secure separation of adjacent applications, as well as being the basis for secure downloading of applications. The self-containment of smart card makes it somewhat attack proof as it does not need to be relied upon potentially attack susceptible external resources. Due to this feature, smart cards are often used in diverse applications which require strong security and authentication. In addition to information security, smart cards achieve greater physical security of services and equipment, because a smart card limits access to only authorized users.

Furthermore, the smart card can be used as a credit/debit bank card which makes it relevant for e-commerce applications. The multi-application smart card, along with the advent of open platform smart card operating systems, brings the only viable option for handling multiple electronic transactions these days. It is a cost effective secure way to manage transactions electronically Manufacturers, issuers and users have come to appreciate the value of one card that manages multi-applications. A multi-application card will be able to amongst other things do an automatic update of new services as well as existing applications, change and store user profiles for each application and be usable on a range of devices. One of the most valuable applications is in using the smart card to buy energy. Recently, the portal technology has been playing an increasing role in computing. Service providers are rolling out portals to allow users to create customized web sites that display exactly the information on the Card and transformer. Corporations are rolling out portals to provide employees and business partner’s customizable access to corporate information. For web enabled energy services, and with the introduction of home networking technology, power companies and service providers can offer value-added services to the homes, like energy management, to generate additional revenue as well as to increase convenience and loyalty. In this research work, we propose a novel and simple prototype of a web enabled smart card based solution for controlling the consumption of electricity in a home environment. The proposed system can calculate the total voltage consumption and the structure health condition of the transformer as well as the total voltage distributed by the transformer. For a while now, energy conservation has been a topical issue. In practical terms, people use much more power than what they actually need and that is responsible for the consequent huge loss of energy.

Moreover, the continuous increase in the universal energy prices has led to a colossal economical loss. Thus, we are proposing a prepaid electricity smart card based system that will enable people to buy specific quantum of energy for use only when needed. People can subscribe for this service and recharge their accounts through the Mobile Phone. The power meter used in this study interrupts the controller at a rate of 0.75Wph based on the particular tariff used and the amount of power consumption needed, the correct amount of money to be loaded into the card can be easily calculated and programmed into the chip. The unique feature about this system is that the electric utility in the home environment can be accessed remotely from the supplier server. The study provides people with the opportunity of buying electricity in advance, using the prepaid electricity cards. Thus, people can use only the amount of power they really require.

The proposed power management system will benefit the end customer as well as the electric utility in that the customer can recharge his account wirelessly from his home using Mobile Communication Module and the status of meter is indicated through a Short Message Services (SMS). The device will show the remaining balance so that the user knows how much he has consumed and can plan ahead and know when he needs to recharge the account and moreover, this strategy provides the utility companies the avenue to collect the expenses from customers in advance. Thus, they will no longer have to deal with late payments or non-payment of bills by the customers. This also helps to reduce electricity theft through bypass.


1.1.1 Motivation

Losses that occur during generation can be measured, but Transmission and Distribution (T&D) losses cannot be quantified completely from the end where information is sent. According to Depuru (2012), distribution losses in several countries have been reported to be over 30%. Substantial quantity of losses proves that Non-Technical Losses (NTL) are involved in power distribution. Total losses during T&D can be evaluated from the information like total load and the total energy billed, using established standards and formulae. In general, NTL are as a result of factors external to the power system. Electricity theft constitutes a major chunk of the NTL.

Electricity theft can be defined as, using electricity from the utility without a contract or valid obligation to alter its measurement. The world over, T&D losses are more than the total installed generation capacity of countries such as Germany, the UK, or France. It is estimated that around the world, utilities lose more than $25 billion every year to illegal consumption of electricity. It has also been discovered that the illegal consumption of power by the local business sector is on the increase. The quality of the power generated, transmitted, and distributed has an impact on the power system components and customer appliances. Due to the illegal consumption of electricity, estimating the overall load in real time becomes very difficult (Depuru, Wang, &Devabhaktuni, 2012).

Figure 1.1: Statistical graph of analyzing electricity theft of Nigeria, Mexico, Pakistan, Dominican Republic, Colombia, Brazil  (Source: Soma and Depuru, 2012)

1.1.2 Summary of Motivation

  1. In post paid system, there is no control of usage from the consumer’s side. In this system, a lot of power is wasted due to the consumer’s lack of planning of electrical consumption in an efficient way.
  2. A lot of inconvenience is associated with having to visit every consumer’s home. Sometimes rooms or houses are found locked and thus made inaccessible.
  • For manual reading, in different houses, there are varying conditions that lead to results being approximated, especially when the meters are inside the home or in a hard-to-access place. In the typing stage also there is room for errors. All these make the billing inaccurate.
  1. Consumers may not be aware of the costs and service consumption till the statement charges are received. This might create problems for the customers when payment is to be made.
  2. Payment by the consumer is expected periodically at a fixed period. If the customer fails to make payment within the period, the service is disconnected manually until payment is made.
  3. The billing system requires manpower, which substantially increases the network operation costs. Due to the aforementioned reasons, the conventional billing systems are discrete, inaccurate, costly, slow, and lack flexibility.


1.1.3 Measures and Methods of Stealing Electricity

In general, electricity consumers may be categorized into genuine customers, partial illegal consumers, and illegal consumers. There are several methods used in pilfering electricity as will be discussed.  The most common and simplest way of pilfering electricity is tapping energy directly from an overhead distribution feeder as shown in the Figure 1.2. The next method of electricity theft is the manipulation of energy meters that are used for recording and billing industrial, commercial and household energy consumption, as explained in Figure 1.3.

Figure 1.2: Tapping electricity directly from a distribution feeder – bypassing the meter

(Source: Soma and Depuru, 2012)

Figure 1.3: Technique used by illegal consumers to regulate the supply voltage and manipulate the energy meter reading (Source: Soma and Depuru, 2012)


There are many methods used to tamper with such meters, some of these may include:

  1. Exposing meters to strong magnetic fields to erase the memory content of the prepaid meter.
  2. Inserting a film or depositing high viscous fluid to disturb the rotation of disc.
  3. Implementation of advanced technologies such as remote sensing devices.
  4. Tampering the crystal frequency of integrated circuits.
  5. Creating a link between the breaking control wires in an energy meter so as to divert the current reading in the meter from reflecting zero reading at all times.
  6. In the case of electronic meters, Radio Frequency (RF) devices are installed which affect the accuracy of the meter.
  7.  A shunt could be installed between the incoming and outgoing meter terminals.
  • Damaging the pressure coil of the meter.
  1. Resetting the meter reading.
  2. Introducing unwanted harmonics.
  3. Exposing the meter to mechanical shock.
  4. Voltage could be regulated from the meter terminals, making it to read a lesser quantity of consumption than the original.

A popular way of lowering the energy meter reading without directly tampering with the meter is shown in Figure 1.3. Here, supply voltage is regulated to manipulate the meter reading. Illegal consumers accomplish this by using one of the three phases; disconnect neutral from the distribution feeder, and using a different neutral for the return path.

Therefore, the energy meter’s working is premised on the assumption that the voltage between the connected phase and the new neutral is zero, implying that the total energy consumed is zero. Another way of stealing electricity is by isolating neutral and disturbing the electronic reference point by physically damaging the meter. The voltage to be read by energy meter can then be manipulated by controlling the neutral.  Generally, illegal consumption of electricity will be predominant only within those hours of the day when the customer’s demand is high. This kind of theft (partial illegal consumption) is very difficult to measure, as the energy consumption pattern is uneven over a period of time. In addition, corrupt employees are usually responsible for billing irregularities; they record an amount of consumption that is lower than the original consumption. On the other hand, improper calibration and illegal recalibration of energy meters can also account for NTL. However, in most of the meter tampered locations, damaged meter terminals and/or illegal practices may not be visible during inspection.

1.1.4    Factors that Influence Illegal Consumers

Factors that influence consumers to steal electricity depend upon a variety of environmental factors that fall into multiple categories. Among these categories, the socio-economic factors appear to be the most predominant reason why people steal electricity. More concisely, some of the important factors are:

  • The erroneous idea that it is not dishonest to steal something from a public institution or large – scale enterprise however it is dishonest to steal from an individual.
  • Higher energy prices, unemployment or poor finances of a consumer.
  • Corrupt employees are usually the agents that facilitate billing discrepancies.
  • Some consumers might not be educated about issues, laws and offenses related to energy theft.
  • Weak accountability and enforcement of the law.

1.2  Statement of the Problem

The conventional electro mechanical meters are being replaced by new electronic meters to improve accuracy in meter reading. Still, the Nigeria power sector faces a serious problem of low revenue collection for the actual electric energy supplied due to the fact that the utility officer carries out inaccurate calculations of voltage, current and power by the energy meter, inability of query request about the working condition of the energy meter from distant locations, the ability of the consumers to form long queues in order to buy credit for their Energy Meters, but for those that make use of the prepaid meters have to wait for several days for them to be re- connected whenever there is disconnection because some of the prepaid payment points for the purchase of token are very far from the consumers.

The major problem is the issue of bypass by the consumer, where high voltages consumptions are connected away from the meter and only low voltage consumption are connected.


1.3 The Objective of the Study

The main objective of this study is to design an Automated Remote Power Management System (ARPMS). The specific objectives are to:

  • carryout extensive literature survey on existing works on prepaid meter;
  • synchronize the operational capabilities through SMS and implement a real time system to calculate the amount of units consumed and
  • design, implement and evaluate the automated remote power management system as a solution to energy theft.

1.4 Significance of the Study

The design and construction of the prepaid energy meter would help to accurately calculate the amount of consumed energy by a certain building, and indicate exact location and distribution line on which unauthorized tapping occurs. The remaining energy available from a pre-purchase of electricity is done by means of recharge through SMS service which provides the utility company with regular status of the meter on a predefined interval, and displays a real time on the user’s account update, which contributes to the retrieval of the balance of the meter, as well as keeping log of the consumed energy and remaining electricity of each user by the means of SMS, to achieve accuracy of meter reading, reduce billing error and operation cost as well as expose energy theft by bypassing voltages.

With this new system, customers are confident that they are not being exploited, power pilfering is eliminated, rogue customers are shut off, prevention of bypass and the huge revenue loss which was inherent in the traditional metering system is completely avoided.

1.5 Scope of the Study

A quad band GSM modem with a registered SIM (subscriber identification module) card with unique numbers was used in this work. The communication process employed here is achieved by installing sets of Attention (AT) command strings in the GSM modems through HyperTerminal software which comes with Microsoft operating system. With the aid of the installed AT command strings, instructions and data are sent and received by the GSM modems respectively. Data received from the consumer unit are used to update the customer’s database at the office of the power providing company.

The Electrically Erasable Programmable Read Only Memory (EEPROM) of the microcontroller is updated each time a customer pays his/her bills via SMS recharge by simply sending a secret pin from his mobile number to the developed system. Other information such as total energy consumed, total amount paid on consumption, the amount of bill paid and the amount left to be used, success of recharge, power disconnect/reconnect by the supply company, and critically low unit is communicated through the customer’s mobile phone to the customer via SMS.

1.6 Organization of the Study

The study provided background information on the subject matter by highlighting the specific objectives of the study. The central idea of the literature review in chapter two is to critically examine the Historical Development of intelligent prepaid energy meter, the required measure needed by consumers in stealing electricity, factors that influence illegal consumption, and the gap between the existing authors and the proposed intelligent prepaid energy meter.

The methodology used is the principle of embedded system with serial communication. The EEPROM of the microcontroller is updated each time a customer pays his/her bills via SMS recharge by simply sending a secret pin from his mobile number to the developed system. The user’s interface consists of Liquid Crystal Display (LCD) which displays energy consumed, the amount of bill paid and the amount left to be used. Information such as unit recharged, success of recharge, power disconnect/reconnect by the supply company, and when the unit left is critically low to avoid loss of power supply is communicated through the customer’s mobile phone to the customer via SMS.

The result and discussion describes the implementations of the system blocks diagram described in chapter 3, starting with block and system simulation, followed by block and system testing. It also discusses the results obtained from those tests and implementations.

The conclusion, recommendation & future work described tangible benefits of the system proposed in this study in terms of reducing the cost of (meter reading, detecting meter tampering and misuse of electricity). As the system is automated, the retrieved data can serve other purposes like online billing system, demand analysis, amongst others. For future work, more research can be done to develop meters that calculate the total voltage on a transformer and the cost on that voltage before it is distributed so that it can be used for comparative analysis. Furthermore, similar technologies can be designed for water meters, gas meters and other types of meters.



All project works, files and documents posted on this website, projects.ng are the property/copyright of their respective owners. They are for research reference/guidance purposes only and the works are crowd-sourced. Please don’t submit someone’s work as your own to avoid plagiarism and its consequences. Use it as a guidance purpose only and not copy the work word for word (verbatim). Projects.ng is a repository of research works just like academia.edu, researchgate.net, scribd.com, docsity.com, coursehero and many other platforms where users upload works. The paid subscription on projects.ng is a means by which the website is maintained to support Open Education. If you see your work posted here, and you want it to be removed/credited, please call us on +2348159154070 or send us a mail together with the web address link to the work, to [email protected] We will reply to and honor every request. Please notice it may take up to 24 - 48 hours to process your request.